数学题:求1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+.+1/(1+2+3+.100)的值.
问题描述:
数学题:求1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+.+1/(1+2+3+.100)的值.
求:1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+.+1/(1+2+3+.100)的值.
答
通项为1/{n(n+1)/2}=2{1/n-1/(n+1)}
所以可化简为
=2(1-1/2)+2(1/2-1/3)+2(1/3-1/4)+……+2(1/100-1/101)
=2(1-1/101)
=200/101