如何证明sin(a+b)sin(a-b)=sin*a-sin*b (*为平方)

问题描述:

如何证明sin(a+b)sin(a-b)=sin*a-sin*b (*为平方)

sin(a+b)sin(a-b)
=(sinacosb+sinbcosa)(sinacosb-sinbcosa)=
=(sinacosb)^2-(sinbcosa)^2
=sin*acos*b-sin*bcos*a
=sin*a(1-sin*b)-sin*b(1-sin*a)
=sin*a-sin*asin*b-sin*b+sin*asin*b
=sin*a-sin*b