已知集合A={a+2,(a+1)²,a²+3a+3},若1∈A,求实数a的值?
问题描述:
已知集合A={a+2,(a+1)²,a²+3a+3},若1∈A,求实数a的值?
已知集合A={a+2,(a+1)²,a²+3a+3},若1∈A,求实数a的值?
刚学,写的易懂
答
因为1∈A
所以a+2=1或(a+1)²=1或a²+3a+3=1
当a+2=1时,得a=-1
这时a²+3a+3=1-3+3=1,即a²+3a+3=a+2
根据集合的唯一性,所以a≠-1
当(a+1)²=1时,解得a=0
这时a+2=2,a²+3a+3=3
所以a=0符合
当a²+3a+3=1时,即a²+3a+2=0
得(a+1)(a+2)=0,解得a=-1或a=-2
a=-1时,前面已得a≠-1
当a=-2时,a+2=0,(a+1)²=1,即(a+1)²=a²+3a+3=1
所以a≠-2
综上可得a值只能是0
如还不明白,请继续追问.
手机提问的朋友在客户端右上角评价点【满意】即可.