曲线y^2=x在点(1,1)的切线方程是x-2y+1=0 求图形面积和绕x轴旋转一周的体积

问题描述:

曲线y^2=x在点(1,1)的切线方程是x-2y+1=0 求图形面积和绕x轴旋转一周的体积
曲线y^2=x在点(1,1)的切线方程是x-2y+1=0,上述曲线和切线及x轴所围成的平面图形的面积是多少,上述平面图形绕x轴旋转一周的体积是多少.照样给详细的步骤.回答了,
呃,,要用定积分的方法求

见图.
切线与x轴的交点为B(-1, 0), 与y轴的交点为C(0, 1/2)
切线(y = (x+1)/2)与抛物线和坐标轴所围的区域分别为绿色和紫色.
绕x轴旋转一周,在x处截面积为:
f(x) = π[(x+1)/2]²  = π[(x+1)²/4   (-1 ≤ x < 0)
      = π[(x+1)/2]²  - π(√x)²  =  π[(x+1)²/4 - πx = π[(x-1)²/4   (0 ≤ x ≤ 1)
V = ∫ π(x+1)²dx/4     (从-1到0)
 + ∫ π[(x-1)²dx/4   (从0到1)
= (π/4)∫ (x+1)²d(x+1) (从-1到0)
+  (π/4)∫ (x-1)²d(x-1)   (从0到1)
= π(x+1)³/12   (从-1到0)
+ π(x-1)³/12   (从0到1)
= π/12 + π/12
= π/6