如图,已知AE、BD相交于点C,AC=AD,BC=BE,F、G、H分别是DC、CE、AB的中点. 求证:(1)HF=HG;(2)∠FHG=∠DAC.

问题描述:

如图,已知AE、BD相交于点C,AC=AD,BC=BE,F、G、H分别是DC、CE、AB的中点.
求证:(1)HF=HG;(2)∠FHG=∠DAC.

证明:(1)连接AF,BG,∵AC=AD,BC=BE,F、G分别是DC、CE的中点,∴AF⊥BD,BG⊥AE.在直角三角形AFB中,∵H是斜边AB中点,∴FH=12AB.同理得HG=12AB,∴FH=HG.(2)∵FH=BH,∴∠HFB=∠FBH;∵∠AHF是△BHF的外...