在Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分线AF交CD于E,交BC于F,CM⊥AF于M,求证:EM=FM.
问题描述:
在Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分线AF交CD于E,交BC于F,CM⊥AF于M,求证:EM=FM.
答
证明:∵∠ACB=90°,CD⊥AB,
∴∠ADC=90°,
∴∠AED+∠DAE=90°,∠CFE+∠CAE=90°,
又∵∠BAC的平分线AF交CD于E,
∴∠DAE=∠CAE,
∴∠AED=∠CFE,
又∵∠AED=∠CEF,
∴∠CEF=∠CFE,
又∵CM⊥AF,
∴EM=FM.