已知AB∥CD,探究下列几种情况: (1)如图1,若∠EAF=1/2∠EAB,∠ECF=1/2∠ECD,求证:∠AFC=1/2∠AEC; (2)如图2,若∠EAF=1/3∠EAB,∠ECF=1/3∠ECD,求证:∠AFC=1/3∠AEC;

问题描述:

已知AB∥CD,探究下列几种情况:

(1)如图1,若∠EAF=

1
2
∠EAB,∠ECF=
1
2
ECD,求证:∠AFC=
1
2
AEC;
(2)如图2,若∠EAF=
1
3
EAB,∠ECF=
1
3
ECD,求证:∠AFC=
1
3
AEC;
(3)若∠AFC=
1
n
EAB,∠ECF=
1
n
ECD,则∠AFC与∠AEC的数量关系是______(用含有n的代数式表示,不证明).

(1)如图1,连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=2x°,∠ECD=2y°,
∵AB∥CD,
∴∠BAC+∠ACD=180°,
∴∠CAE+2x°+∠ACE+2y°=180°,
∴∠CAE+∠ACE=180°-(2x°+2y°),∠FAC+∠FCA=180°-(x°+y°)
∴∠AEC=180°-(∠CAE+∠ACE)
=180°-[180°-(2x°+2y°)]
=2x°+2y°
=2(x°+y°),
∠AFC=180°-(∠FAC+∠FCA)
=180°-[180°-(x°+y°)]
=x°+y°
∴∠AFC=

1
2
∠AEC,
(2)如图2,连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=3x°,∠ECD=3y°,
∵AB∥CD,
∴∠BAC+∠ACD=180°,
∴∠CAE+3x°+∠ACE+3y°=180°,
∴∠CAE+∠ACE=180°-(3x°+3y°),∠FAC+∠FCA=180°-(2x°+2y°)
∴∠AEC=180°-(∠CAE+∠ACE)
=180°-[180°-(3x°+3y°)]
=3x°+3y°
=3(x°+y°),
∠AFC=180°-(∠FAC+∠FCA)
=180°-[180°-(2x°+2y°)]
=2x°+2y°
=2(x°+y°),
∴∠AFC=
2
3
∠AEC,
(3)若∠AFC=
1
n
EAB,∠ECF=
1
n
ECD,则∠AFC与∠AEC的数量关系是:∠AFC=
n−1
n
∠AEC;