1.已知f(x)=sin(x+θ)+sin(θ-x)-2sinθ对于x∈R都有f(x)≥0成立,θ∈(0,3π/2],且tanθ=3/4
问题描述:
1.已知f(x)=sin(x+θ)+sin(θ-x)-2sinθ对于x∈R都有f(x)≥0成立,θ∈(0,3π/2],且tanθ=3/4
,求cosθ/2的值
答
f(x)=sinxcosθ+cosxsinθ+sinθcosx-cosθsinx-2sinθ
=2sinθcosx-2sinθ
=2sinθ(1-cosx)
>=0
因为1-cosx>=0
所以sinθ>=0,又
tanθ=3/4>0
θ(0,3π/2]所以θ在(0,π/2)θ/2在(0,π/4)
cosθ=4/5
又cos²θ/2=1/2(1+cosθ)=1/2(1+4/5)=9/10
所以
cosθ/2=3v10/10cosθ符号没错吗?没错,sinθ>=0,又tanθ=3/4>0 θ(0,3π/2]
所以θ在(0,π/2)θ/2在(0,π/4)