设ab>0,且a+b=2,则当a= _ 时,1/4a+1/b取得最小值.
问题描述:
设ab>0,且a+b=2,则当a= ___ 时,
+1 4a
取得最小值.1 b
答
∵a+b=2,∴
+a 2
=1,b 2
∴
+1 4a
=(1 b
+1 4a
)(1 b
+a 2
)b 2
=
+1 8
+1 2
+b 8a
a 2b
≥
+25 8
×b 8a
a 2b
=
+5 8
1 2
=
,当且仅当9 8
=b 8a
且a+b=2时,等号成立,解得a=a 2b
.2 3
故答案为:
.2 3