过P(1,4)作一直线,分别交x,y轴正半轴于AB两点,那么PA^2+PB^2取最小值时直线l的斜率

问题描述:

过P(1,4)作一直线,分别交x,y轴正半轴于AB两点,那么PA^2+PB^2取最小值时直线l的斜率

设点A(x,0)B(0,y)A、B、P共线有(x-1)/4=1/(4-y)则PA^2+PB^2=(x-1)^2+16+1+(y-4)^2=(4/(y-4))^2+17+(y-4)^2上式利用不等式:有(4/(y-4))^2+17+(y-4)^2≥17+2根号((4/(y-4))^2乘以(y-4)^2)=17+8=25仅...