ABC中,内角ABC成等差数列,其对边abc满足2b^2=3ac,求A

问题描述:

ABC中,内角ABC成等差数列,其对边abc满足2b^2=3ac,求A

内角ABC成等差数列,则A+C=2B又A+B+C=π∴B=π/3由余弦定理:b^2=a^2+c^2-2accosB=a^2+c^2-ac而2b^2=3ac∴2(a^2+c^2-ac)=3aca=2c或a=c/2由正弦定理,a/c=sinA/sinC=sinA/sin(2π/3-A)=2或1/2得A=π/2或π/6...2(a^2+c^2-ac)=3aca=2c或a=c/2上面怎么得出下面的?2a^2-5ac-2c^2=0分解因式,(2a-c)(a-2c)=0sinA/sin(2π/3-A)=2或1/2A=π/2或π/6 怎么得到的,不会是把sin(2π/3-A)拆开吧就是拆开,不复杂sinA/sin(2π/3-A)=2sinA=2sin(2π/3-A)=2(sin2π/3cosA-cos2π/3sinA)=√3cosA+sinA√3cosA=0,A=π/2sinA/sin(2π/3-A)=1/22sinA=√3cosA/2+sinA/2√3sinA=cosA,tanA=√3/3A=π/6 不过我做到a=2c或a=c/2的时候直接画了个图B=π/3,a、c又是2倍关系,显然是一个有60°角的直角三角形所以后面只需列个式子得出结果就可以了,你可以借鉴一下