2cos(A-B)+2cos(B-C)+2cos(C-A)=-3 求cos(2A-2C)
问题描述:
2cos(A-B)+2cos(B-C)+2cos(C-A)=-3 求cos(2A-2C)
由判别式得:cos[(x-y)/2]>=1 没看懂~
答
设A-B=x,B-C=y,C-A=z,则x+y+z=0
2cosx+2cosy+2cosz
=2cos[(x+y)/2+(x-y)/2]+2cos[(x+y)/2-(x-y)/2]+2cos(x+y)
=4cos^2[(x+y)/2]+4cos[(x-y)/2]*cos[(x+y)/2]-2
=-3
4cos^2[(x+y)/2]+4cos[(x-y)/2]*cos[(x+y)/2]+1=0
由判别式得:cos[(x-y)/2]>=1
所以cos[(x-y)/2]=1
4cos^2[(x+y)/2]+4cos[(x+y)/2]+1=0
cos[(x+y)/2]=-1/2
cos(x+y)=-1/2
x+y=A-C
cos(A-C)=-1/2
cos(2A-2C)=-1/2