已知:如图,在Rt△ABC中,∠ACB=90°,点P是边AB上的一个动点,联结CP,过点B作BD⊥CP,垂足为点D.
问题描述:
已知:如图,在Rt△ABC中,∠ACB=90°,点P是边AB上的一个动点,联结CP,过点B作BD⊥CP,垂足为点D.
(1)如图1,当CP经过△ABC的重心时,求证:△BCD∽△ABC.
(2)如图2,若BC=2厘米,cotA=2,点P从点A向点B运动(不与点A、B重合),点P的速度是厘米/秒.设点P运动的时间为t秒,△BCD的面积为S平方厘米,求出S关于t的函数解析式,并写出它的定义域.
(3)在第(2)小题的条件下,如果△PBC是以CP为腰的等腰三角形,求△BCD的面积.
答
(1)当CP经过△ABC的重心时CP是AB边上的中线因为,∠ACB=90°所以CP=BP=AP所以∠PCB=∠PBC因为BD⊥CP,垂足为点D所以∠BDC=∠ACB=90°所以:△BCD∽△ABC.(2)若BC=2厘米,cotA=2,则AC=4厘米,AB=2根号5厘米过点D作DE⊥...