设A为n阶方阵,且满足(A-E)^2=2(A+E)^2,证明A是可逆的,并求A^-1
问题描述:
设A为n阶方阵,且满足(A-E)^2=2(A+E)^2,证明A是可逆的,并求A^-1
答
设A为n阶方阵,且满足(A-E)^2=2(A+E)^2,证明A是可逆的,并求A^-1