已知a,b为正实数,求证:(a+b)×(1/a+1/b)≥4

问题描述:

已知a,b为正实数,求证:(a+b)×(1/a+1/b)≥4

证:
(a+b)(1/a+1/b)
=1+a/b+b/a+1
=2+a/b+b/a
a>0,b>0
由均值不等式,得:a/b+b/a≥2 (当a/b=b/a时,即a=b时,取等号)
2+a/b+b/a≥2+2=4
(a+b)(1/a+1/b)≥4