1+1/1+2+1/1+2+3...+1/1+2+3+...+n=

问题描述:

1+1/1+2+1/1+2+3...+1/1+2+3+...+n=

1+2+3+...+n=n(n+1)/21/(1+2+3+...+n)=1/[n(n+1)/2]=2/n(n+1)=2[1/n-1/(n+1)]于是原式=2[1/1-1/(1+1)]+2[1/2-1/(2+1)]+2[1/3-1/(3+1)]+……+2[1/n-1/(n+1)]=2[1/1-1/2]+2[1/2-1/3]+2[1/3-1/4]+……+2[1/n-1/(n+1)]=2...�ܰѽ���˼·˵һ�������õ������������ѷ�ĸת��һ�£�Ȼ���������Ȼ�����໥����ʣ�µ�һ������һ�����򼴿�