设f(x)是定义在R上的奇函数,且对任意a,b,当a+b不等于0,都有[f(a)+f(b)]/(a+b)>0
问题描述:
设f(x)是定义在R上的奇函数,且对任意a,b,当a+b不等于0,都有[f(a)+f(b)]/(a+b)>0
(1)若a>b,试比较f(a)与f(b)的大小
(2)若f(k•3^x)+f(3^x–9^x–2)
答
f(x)是定义在R上的奇函数,则f(-b)=-f(b),
且对任意a,b,当a+b不等于0,都有[f(a)+f(b)]/(a+b)>0
(1)若a>b,试比较f(a)与f(b)的大小
所以a+(-b)=a-b>0,则[f(a)+f(-b)]/[a+(-b)]=[f(a)-f(b)]/(a-b)>0
所以f(a)>f(b)
(2)若f(k•3^x)+f(3^x–9^x–2)