设函数f(x)对任意x均满足等式f(1+x)=af(x),且有f′(0)=b,其中a,b为非零常数,则(  ) A.f(x)在x=1处不可导 B.f(x)在x=1处可导,且f′(1)=a C.f(x)在x=1处可导,且f′(1)=b

问题描述:

设函数f(x)对任意x均满足等式f(1+x)=af(x),且有f′(0)=b,其中a,b为非零常数,则(  )
A. f(x)在x=1处不可导
B. f(x)在x=1处可导,且f′(1)=a
C. f(x)在x=1处可导,且f′(1)=b
D. f(x)在x=1处可导,且f′(1)=ab

函数f(x)对任意x均满足等式f(1+x)=af(x),且有f′(0)=b,其中a,b为非零常数,则
f'+(1)=

lim
x→0+
f(1+x)−f(1)
x
lim
x→0+
af(x)−af(0)
x
=af+(0)=af′(0)=ab
f'-(1)=
lim
x→0
f(1+x)−f(1)
x
lim
x→0
af(x)−af(0)
x
=af(0)=af′(0)=ab

所以,f'+(1)=f'-(1)=ab
所以,f(x)在x=1处可导,且f′(1)=ab
故选:D.