设函数f(x)对任意x均满足等式f(1+x)=af(x),且有f′(0)=b,其中a,b为非零常数,则( ) A.f(x)在x=1处不可导 B.f(x)在x=1处可导,且f′(1)=a C.f(x)在x=1处可导,且f′(1)=b
问题描述:
设函数f(x)对任意x均满足等式f(1+x)=af(x),且有f′(0)=b,其中a,b为非零常数,则( )
A. f(x)在x=1处不可导
B. f(x)在x=1处可导,且f′(1)=a
C. f(x)在x=1处可导,且f′(1)=b
D. f(x)在x=1处可导,且f′(1)=ab
答
函数f(x)对任意x均满足等式f(1+x)=af(x),且有f′(0)=b,其中a,b为非零常数,则
f'+(1)=
lim x→0+
=f(1+x)−f(1) x
lim x→0+
=af′+(0)=af′(0)=abaf(x)−af(0) x
f'-(1)=
lim x→0−
=f(1+x)−f(1) x
lim x→0−
=af′−(0)=af′(0)=abaf(x)−af(0) x
所以,f'+(1)=f'-(1)=ab
所以,f(x)在x=1处可导,且f′(1)=ab
故选:D.