已知反比例函数y=k−1x(k为常数,k≠1). (Ⅰ)其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值; (Ⅱ)若在其图象的每一支上,y随x的增大而减小,求k的取值

问题描述:

已知反比例函数y=

k−1
x
(k为常数,k≠1).
(Ⅰ)其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值;
(Ⅱ)若在其图象的每一支上,y随x的增大而减小,求k的取值范围;
(Ⅲ)若其图象的一支位于第二象限,在这一支上任取两点A(x1,y1)、B(x2,y2),当y1>y2时,试比较x1与x2的大小.

(Ⅰ)由题意,设点P的坐标为(m,2)
∵点P在正比例函数y=x的图象上,
∴2=m,即m=2.
∴点P的坐标为(2,2).
∵点P在反比例函数y=

k−1
x
的图象上,
∴2=
k−1
2
,解得k=5.
(Ⅱ)∵在反比例函数y=
k−1
x
图象的每一支上,y随x的增大而减小,
∴k-1>0,解得k>1.
(Ⅲ)∵反比例函数y=
k−1
x
图象的一支位于第二象限,
∴在该函数图象的每一支上,y随x的增大而增大.
∵点A(x1,y1)与点B(x2,y2)在该函数的第二象限的图象上,且y1>y2,
∴x1>x2