已知数列{an}的首项a1=4,前n项和为Sn,且Sn+1-3Sn-2n-4=0(n∈N+) (1)求数列{an}的通项公式; (2)设函数f(x)=anx+an-1x2+…+a1xn,f′(x)是函数f(x)的导函数,令bn=f′(1),
问题描述:
已知数列{an}的首项a1=4,前n项和为Sn,且Sn+1-3Sn-2n-4=0(n∈N+)
(1)求数列{an}的通项公式;
(2)设函数f(x)=anx+an-1x2+…+a1xn,f′(x)是函数f(x)的导函数,令bn=f′(1),求数列{bn}的通项公式,并研究其单调性.
答
(1)∵Sn+1-3Sn-2n-4=0(n∈N+) ①
∴Sn-3Sn-1-2(n-1)-4=0(n∈N+) ②
①-②得an+1-3an-2=0,
即an+1+1=3(an+1)
∴{an+1}是首项为5,公比为3的等比数列.
∴an+1=5•3n-1,
即an═5•3n-1-1.
(2)∵f(x)=anx+an-1x2+…+a1xn,
∴f′(x)=an+2an-1x+…+na1xn-1
∴bn=f′(1)=an+2an-1+…+na1 =(5×3n-2-1)+…+n(5×30-1)
=5[3n-1+2×3n-2+…+n×30]-
,n(n+1) 2
令S=3n-1+2×3n-2+…+n×30,则3S=3n+2×3n-1+…+n×31.
作差得S=-
-n 2
.3-3n+1
4
于是,bn=f′(1)=
-5×3n+1-15 4
,而bn+1=n(n+6) 4
-5×3n+2-15 4
,(n+1)(n+7) 4
作差得bn+1-bn=
-15×3n
2
-n 2
>07 4
∴{bn}是递增数列.