设实数a≠0,函数f(x)=a(x2+1)-(2x+1/a)有最小值-1. (1)求a的值; (2)设数列{an}的前n项和Sn=f(n),令bn=a2+a4+…+a2nn,证明:数列{bn}是等差数列.
问题描述:
设实数a≠0,函数f(x)=a(x2+1)-(2x+
)有最小值-1.1 a
(1)求a的值;
(2)设数列{an}的前n项和Sn=f(n),令bn=
,证明:数列{bn}是等差数列.
a2+a4+…+a2n
n
答
(1)∵f(x)=a(x-1a)2+a-2a,由已知知f(1a)=a-2a=-1,且a>0,解得a=1,a=-2(舍去).(2)证明:由(1)得f(x)=x2-2x,∴Sn=n2-2n,a1=S1=-1.当n≥2时,an=Sn-Sn-1=n2-2n-(n-1)2+2(n-1)=2n-3,a1满足...