已知f(x)是定义在R上的恒不为0的函数,且对任意实数x,y都满足f(x)*f(y)=f(x+y)(1)求f(0)并证明对任意的x∈R都有f(x)>0,(2)设当xf(0),判断并证明f(x)在R上单调性

问题描述:

已知f(x)是定义在R上的恒不为0的函数,且对任意实数x,y都满足f(x)*f(y)=f(x+y)(1)求f(0)并证明对任意的x∈R都有f(x)>0,(2)设当xf(0),判断并证明f(x)在R上单调性

f(0)*f(0)=f(0)所以f(0)=1或者0,因为f(x)恒不为0,所以f(0)=1.并且对任意的x,f(x)=f(x/2)*f(x/2)=[f(x/2)]^2>0显然成立.
对任意的x>y,此时f(y-x)f(x)=f(y),因为y-x<0,所以f(y-x)<f(0)=1,而f(x),f(y)都是正数,所以f(y)=f(y-x)f(x)<f(x),因此该函数是递增的.