设α,β,γ 都是锐角,且sinα+sinβ+sinγ=1,证明(1)sin2α+sin2β+sin2γ≥13;(2)tan2α+tan2β+tan2 γ≥38.

问题描述:

设α,β,γ 都是锐角,且sinα+sinβ+sinγ=1,证明
(1)sin2α+sin2β+sin2γ≥

1
3

(2)tan2α+tan2β+tan2 γ≥
3
8

证明:(1)由柯西不等式得:(sin2α+sin2β+sin2γ)(1+1+1)≥(1•sinα+1•sinβ+1•sinγ)2
因为sinα+sinβ+sinγ=1,所以3(sin2α+sin2β+sin2γ)≥1,得:sin2α+sin2β+sin2γ≥

1
3

(2)由恒等式tan2x=
1
cos2x
-1
和若a,b,c>0,则
1
a
+
1
b
+
1
c
9
a+b+c

得tan2α+tan2β+tan2 γ=
1
cos2α
+
1
cos2β
+
1
cos2γ
-3≥
9
cos2α+cos2β+cos2γ
-3.
于是
9
cos2α+cos2β+cos2γ
=
9
3-(sin2α+sin2β+sin2γ)
9
3-
1
3
=
27
8

由此得tan2α+tan2β+tan2 γ≥
27
8
-3=
3
8

答案解析:(1)根据柯西不等式得:(sin2α+sin2β+sin2γ)(1+1+1)≥(1•sinα+1•sinβ+1•sinγ)2,结合题中条件即可证得;
(2)由恒等式tan2x=
1
cos2x
−1
和重要结论:“若a,b,c>0,则
1
a
+
1
b
+
1
c
9
a+b+c
,”即可得出:得tan2α+tan2β+tan2 γ=
1
cos2α
+
1
cos2β
+
1
cos2γ
-3≥
9
cos2α+cos2β+cos2γ
-3,再进行放缩即得.
考试点:一般形式的柯西不等式.
知识点:本小题主要考查一般形式的柯西不等式、三角函数的同角三角函数关系式、不等式的证明等基础知识,考查运算求解能力,考查化归与转化思想.属于中档题.