如图,△ABC中,∠ABC的平分线与△ABC的外角∠DAC、∠ACF的平分线相交于点E,EH⊥AC,垂足为点H.求证:∠AEB=∠CEH.
问题描述:
如图,△ABC中,∠ABC的平分线与△ABC的外角∠DAC、∠ACF的平分线相交于点E,EH⊥AC,垂足为点H.求证:∠AEB=∠CEH.
答
证明:如图,过点E作EM⊥BC于M,
∵∠ABC的平分线与△ABC的外角∠DAC、∠ACF的平分线相交于点E,
∴∠CAE=
(∠ABC+∠ACB),∠ECM=1 2
(∠BAC+∠ABC),1 2
在△ABE中,∠AEB=180°-∠ABE-∠BAE,
=180°-
∠ABC-∠BAC-1 2
(∠ABC+∠ACB),1 2
=180°-∠ABC-∠BAC-
∠ACB,1 2
=
∠ACB,1 2
∵EH⊥AC,
∴∠CEH=∠CEM=90°-∠ECM=90°-
(∠BAC+∠ABC)=90°-1 2
(180°-∠ACB),1 2
=
∠ACB,1 2
∴∠AEB=∠CEH.