如图,△ABC中,∠ABC的平分线与△ABC的外角∠DAC、∠ACF的平分线相交于点E,EH⊥AC,垂足为点H.求证:∠AEB=∠CEH.

问题描述:

如图,△ABC中,∠ABC的平分线与△ABC的外角∠DAC、∠ACF的平分线相交于点E,EH⊥AC,垂足为点H.求证:∠AEB=∠CEH.

证明:如图,过点E作EM⊥BC于M,
∵∠ABC的平分线与△ABC的外角∠DAC、∠ACF的平分线相交于点E,
∴∠CAE=

1
2
(∠ABC+∠ACB),∠ECM=
1
2
(∠BAC+∠ABC),
在△ABE中,∠AEB=180°-∠ABE-∠BAE,
=180°-
1
2
∠ABC-∠BAC-
1
2
(∠ABC+∠ACB),
=180°-∠ABC-∠BAC-
1
2
∠ACB,
=
1
2
∠ACB,
∵EH⊥AC,
∴∠CEH=∠CEM=90°-∠ECM=90°-
1
2
(∠BAC+∠ABC)=90°-
1
2
(180°-∠ACB),
=
1
2
∠ACB,
∴∠AEB=∠CEH.