已知函数f(x)=log4(4^x+1)-1/2x是偶函数,g(x)=log4(a2^x-4a/3),若f(x)与g(x)的图像只有一个公共点,求a的取值范围

问题描述:

已知函数f(x)=log4(4^x+1)-1/2x是偶函数,g(x)=log4(a2^x-4a/3),若f(x)与g(x)的图像只有一个公共点,求a的取值范围
抱歉。忘记讲了。答案是{-3},(1,正无穷)

根据题意,有两种情况:1.在定义域内f(x)=g(x)只有一个解,即f(x)-g(x)=0只有一个解所以log4(4^x+1)-1/2x-log4(a*2^x-4/3a)=0得log4[(4^x+1)/(a*2^x-4/3a)]=1/2x4^(1/2x)=(4^x+1) / (a*2^x-4/3a)2^x=[2^(2x)+1] / (a*2...