设p为椭圆x*2/a*+y*2/b*2=1上一点,F1,F2为焦点,如果∠PF1F2=15度,∠PF2F1=75度,那么椭圆的离心率为

问题描述:

设p为椭圆x*2/a*+y*2/b*2=1上一点,F1,F2为焦点,如果∠PF1F2=15度,∠PF2F1=75度,那么椭圆的离心率为

角F1PF2=90度,F1F2=2c
PF1=F1F2*sin15度
PF2=F1F2*sin75度
sin15=(根号6-根号2)/4
sin75=(根号6+根号2)/4
所以 2a=PF1+PF2=F1F2*根号6/2
2a=2c*根号6/2
离心率e=c/a=2/根号6=根号6/3