已知F1,F2是椭圆的焦点,P为椭圆上一点,∠F1PF2=60°.(1)求椭圆离心率的取值范围;(2)求证:△F1PF2的面积只与椭圆的短轴长有关.

问题描述:

已知F1,F2是椭圆的焦点,P为椭圆上一点,∠F1PF2=60°.
(1)求椭圆离心率的取值范围;
(2)求证:△F1PF2的面积只与椭圆的短轴长有关.

设椭圆方程为 x2a2+y2b2=1(a>b>0),|PF1|=m,|PF2|=n. 在△PF1F2中,由余弦定理可知,4c2=m2+n2-2mncos60°.∵m+n=2a,∴m2+n2=(m+n)2-2mn=4a2-2mn,∴4c2=4a2-3mn.即3mn=4a2-4c2. 又mn≤( m+n2)2=...
答案解析:(1)由题意,可设|PF1|=m,|PF2|=n. 在△PF1F2中,由余弦定理可知,4c2=m2+n2-2mncos60°.再由定义得出m+n=2a,然后进行恒等变形,将4c2=m2+n2-2mncos60°量m,n用a,c表示出来即可得出离心率的取值范围
(2)根据(1)中的结论,可算出△F1PF2的面积等于

3
3
b2,由此可得△F1PF2的面积仅与椭圆的短轴长有关.
考试点:椭圆的简单性质.
知识点:本题给出椭圆上一点与椭圆两个焦点构成的三角形,求三角形的面积并讨论椭圆的离心率,着重考查了椭圆的定义与简单性质、基本不等式求最值和用正余弦定理解三角形等知识,属于中档题.