已知F1,F2是椭圆的焦点,P为椭圆上一点,∠F1PF2=60°. (1)求椭圆离心率的取值范围; (2)求证:△F1PF2的面积只与椭圆的短轴长有关.
问题描述:
已知F1,F2是椭圆的焦点,P为椭圆上一点,∠F1PF2=60°.
(1)求椭圆离心率的取值范围;
(2)求证:△F1PF2的面积只与椭圆的短轴长有关.
答
设椭圆方程为 x2a2+y2b2=1(a>b>0),|PF1|=m,|PF2|=n. 在△PF1F2中,由余弦定理可知,4c2=m2+n2-2mncos60°.∵m+n=2a,∴m2+n2=(m+n)2-2mn=4a2-2mn,∴4c2=4a2-3mn.即3mn=4a2-4c2. 又mn≤( m+n2)2=...