5sinB=sin(2A+B) 求证2tan(A+B)=3tanA
问题描述:
5sinB=sin(2A+B) 求证2tan(A+B)=3tanA
答
原式可以写成:
5sin[(A + B) - A] = sin[(A + B) + A]
左边 = 5sin(A + B)cosA - 5cos(A + B)sinA
右边 = sin(A + B)cosA + cos(A + B)sinA ,移项得:
4sin(A + B)cosA = 6cos(A + B)sinA
两边除以 2cosAcos(A + B) 即得:
2tan(A+B)=3tanA