化简cosa*根号下(1-sina/1+sina)+sina*根号下(1-cosa/1+cosa)

问题描述:

化简cosa*根号下(1-sina/1+sina)+sina*根号下(1-cosa/1+cosa)

若一下绝对值可去掉
原式=cosa*根下(sin(a/2)-cos(a/2))^2/(sin(a/2)+cos(a/2))^2+sina*根下(1-(1-2sin(a/2)^2)/(1+(2cos(a/2)^2-1)
=(cos(a/2)+sin(a/2))*(cos(a/2)-sin(a/2))*绝对值(sin(a/2)-cos(a/2))/(sin(a/2)+cos(a/2))
=2sin(a/2)*cos(a/2)*绝对值(sin(a/2)/cos(a/2))
=(-sin(a/2)+cos(a/2))*(sin(a/2)-cos(a/2))
+2sin(a/2)^2
=sin(a/2)^2-cos(a/2)^2+2*sin(a/2)*cos(a/2)
=-cosa+sina

条件不足
设a是第四象限角,化简cosa根号下(1-sina)/(1+sina)+sina根号下(1-cosa)/(1+cosa)
cosa√(1-sina)/(1+sina)+sina√(1-cosa)/(1+cosa)
=cosa*|sina/2-cosa/2|/|sina/2+cosa/2|+sina*|sina/2|/|cosa/2|
∵a是第四象限角
∴sina/2+cosa/2<0,sina/2-cosa/2>0,sina/2与cosa/2异号
∴原式=-(cosa/2+sina/2)(cosa/2-sina/2)*(sina/2-cosa/2)/(sina/2+cosa/2)-2sina/2*cosa/2*(sina/2)/(cosa/2)
=(cosa/2-sina/2)^2-2(sina/2)^2
=1-sina-(1-cosa)
=-sina+cosa