设0
问题描述:
设0
数学人气:652 ℃时间:2020-06-01 02:59:22
优质解答
∵0<θ<π/2,∴-π/4<θ-π/4<π/4,且sinθ>0、cosθ>0.
∴由x^2sinθ-y^2cosθ=1,得:x^2-y^2cotθ=cscθ,
由x^2cosθ+y^2sinθ=1,得:x^2+y^2tanθ=secθ.
∴y^2(tanθ+cotθ)=secθ-cscθ,
∴y^2(sinθ/cosθ+cosθ/sinθ)=1/cosθ-1/sinθ,
∴y^2[(sinθ)^2+(cosθ)^2]=sinθ-cosθ,
∴y^2=sinθ-cosθ=√2[sinθcos(π/4)-cosθsin(π/4)]=√2sin(θ-π/4).
∵x^2sinθ-y^2cosθ=1、x^2cosθ+y^2sinθ=1有四个不同的交点,
∴y^2=√2sin(θ-π/4)>0,而-π/4<θ-π/4<π/4,∴0<θ-π/4<π/4,∴π/4<θ<π/2.
∴满足条件的θ的取值范围是(π/4,π/2).
∴由x^2sinθ-y^2cosθ=1,得:x^2-y^2cotθ=cscθ,
由x^2cosθ+y^2sinθ=1,得:x^2+y^2tanθ=secθ.
∴y^2(tanθ+cotθ)=secθ-cscθ,
∴y^2(sinθ/cosθ+cosθ/sinθ)=1/cosθ-1/sinθ,
∴y^2[(sinθ)^2+(cosθ)^2]=sinθ-cosθ,
∴y^2=sinθ-cosθ=√2[sinθcos(π/4)-cosθsin(π/4)]=√2sin(θ-π/4).
∵x^2sinθ-y^2cosθ=1、x^2cosθ+y^2sinθ=1有四个不同的交点,
∴y^2=√2sin(θ-π/4)>0,而-π/4<θ-π/4<π/4,∴0<θ-π/4<π/4,∴π/4<θ<π/2.
∴满足条件的θ的取值范围是(π/4,π/2).
我来回答
类似推荐
答
∵0<θ<π/2,∴-π/4<θ-π/4<π/4,且sinθ>0、cosθ>0.
∴由x^2sinθ-y^2cosθ=1,得:x^2-y^2cotθ=cscθ,
由x^2cosθ+y^2sinθ=1,得:x^2+y^2tanθ=secθ.
∴y^2(tanθ+cotθ)=secθ-cscθ,
∴y^2(sinθ/cosθ+cosθ/sinθ)=1/cosθ-1/sinθ,
∴y^2[(sinθ)^2+(cosθ)^2]=sinθ-cosθ,
∴y^2=sinθ-cosθ=√2[sinθcos(π/4)-cosθsin(π/4)]=√2sin(θ-π/4).
∵x^2sinθ-y^2cosθ=1、x^2cosθ+y^2sinθ=1有四个不同的交点,
∴y^2=√2sin(θ-π/4)>0,而-π/4<θ-π/4<π/4,∴0<θ-π/4<π/4,∴π/4<θ<π/2.
∴满足条件的θ的取值范围是(π/4,π/2).