在直角坐标系中有点A(a,b),B(a,c),C(-a,-b),D(-a,-c)(a≠0,b≠c).若要使四边形ABCD是矩形,b,c应满足什么条件?说明你的理由.
问题描述:
在直角坐标系中有点A(a,b),B(a,c),C(-a,-b),D(-a,-c)(a≠0,b≠c).若要使四边形ABCD是矩形,b,c应满足什么条件?说明你的理由.
答
要使四边形ABCD是矩形,b,c应满足的条件是c=2b,理由是:∵A(a,b),B(a,c),C(-a,-b),D(-a,-c),∴AB2=(a-a)2+(b-c)2=(b-c)2,BC2=(a+a)2+(c+b)2,AC2=(a+a)2+(b+b)2,要使四边形ABCD是...