∵mx²+(m-2)x+(m-1)的值域为R

问题描述:

∵mx²+(m-2)x+(m-1)的值域为R
∴M≠0时,必有 1,M>0
2,△≥0
为什么M≠0时就有后面那两个东西?
已知函数F(X)=IN【mx²+(m-2)x+(m-1)】的值域为R,求M取值范围?
∵函数F(X)=IN【mx²+(m-2)x+(m-1)】的值域为R
∴H(X)=mx²+(m-2)x+(m-1)的值域包含(0,+无穷)的任意实数
M=0时,H(X)=-2X-1,值域为R,符合
∴M≠0时,必有 M>0
△≥0

从该抛物线的图像就很容易知道!
mx²+(m-2)x+(m-1) 这个应该是在根号内的吧!
要使其有意义,即mx²+(m-2)x+(m-1)>=0,
那么由图像要使上式恒成立即其图像恒在x轴的上方,那么m>0(保证开口向上)