已知等比数列{an}的公比为正数,且a1=2,a3=a2+4. (1)求{an}的通项公式; (2)设{bn}是首项为1,公差为2的等差数列,求数列{an•bn}的前n项和Sn.
问题描述:
已知等比数列{an}的公比为正数,且a1=2,a3=a2+4.
(1)求{an}的通项公式;
(2)设{bn}是首项为1,公差为2的等差数列,求数列{an•bn}的前n项和Sn.
答
(1)设数列{an}的公比为q,且q>0.
由a1=2,a3=a2+4得2q2=2q+4,化为q2-q-2=0,
又q>0,解得q=2.
∴数列{an}的通项公式an=2×2n−1=2n.
(2)∵{bn}是首项为1,公差为2的等差数列.
∴bn=1+(n-1)×2=2n-1.
∴an•bn=(2n-1)×2n.
∴Sn=1×21+3×22+…+(2n-3)×2n-1+(2n-1)×2n,
∴2Sn=1×22+3×23+…+(2n-3)×2n+(2n-1)×2n+1.
两式相减可得:−Sn=2+2×(22+23+…+2n)-(2n-1)×2n+1
=2+2×
−(2n−1)×2n+1=(3-2n)×2n+1-6,4(2n−1−1) 2−1
∴Sn=(2n−3)•2n+1+6.