证明:对n阶方阵A,若存在两正整数k,l(k
问题描述:
证明:对n阶方阵A,若存在两正整数k,l(k
答
恩 这样
设A^l=C,A^k=B
R(A^k)=R(A^(k+l))->R(B)=R(B*C)
因为min{R(B),R(C)}≥R(B*C)又因为k
且R(B*C)≥R(B)+R(C)-n因为R(B)=R(B*C)
所以0≥R(C)-n即n≥R(C)
所以得R(A^l)