数列{an}中,an=n^2-kn,若对任意的正整数n,an≥a3都成立,则k的取值范围是[5,7] 我查了下网上的过程:考虑函数f(n)=n^2-kn,因为原数列中a3是最小值,所以函数f(n)=n^2-kn应该是一个开口向上的函数,若考虑n是连续的,那么,函数的对称轴应该靠近n=3这条直线,同时可以在n=5/2和n=7/2处,因为在这两处时分别有a2=a3和a4=a3,所以对称轴-b/(2a)=k/2∈[5/2,7/2],解得k∈[5,7] 同时可以在n=5/2和n=7/2处,因为在这两处时分别有a2=a3和a4=a3,.这步不懂 ps:能转化成恨成立问题做么

问题描述:

数列{an}中,an=n^2-kn,若对任意的正整数n,an≥a3都成立,则k的取值范围是
[5,7] 我查了下网上的过程:考虑函数f(n)=n^2-kn,因为原数列中a3是最小值,所以函数f(n)=n^2-kn应该是一个开口向上的函数,若考虑n是连续的,那么,函数的对称轴应该靠近n=3
这条直线,同时可以在n=5/2和n=7/2处,因为在这两处时分别有a2=a3和a4=a3,所以对称轴-b/(2a)=k/2∈[5/2,7/2],解得k∈[5,7]
同时可以在n=5/2和n=7/2处,因为在这两处时分别有a2=a3和a4=a3,.这步不懂 ps:能转化成恨成立问题做么