函数f(x)=x^2+1大于等于零恒成立吗
问题描述:
函数f(x)=x^2+1大于等于零恒成立吗
f(x)=x^2+1>0恒成立我知道但f(x)=x^2+1的值域中不是没有零这个数吗那为什么f(x)=x^2+1=0也恒成立呢
答
是的,因为f(x)=x^2+1≥1≥0.f(x)=x^2+1>0恒成立我知道但f(x)=x^2+1的值域中不是没有零这个数吗那为什么f(x)=x^2+1=0也恒成立呢1≥0成立,因为这是或的关系,只要满足大于或等于中的一个就行了。你可以想想大于和等于0不能同时成立,不能说1既大于0又等于0,或者你可以把1≥0读作1不小于0,这样就容易理解了。