在正方形ABCD中,对角线AC,BD相交于点O,AE平分角BAC交BD于点E,若正方形的周长为16,则DE的长为( )
问题描述:
在正方形ABCD中,对角线AC,BD相交于点O,AE平分角BAC交BD于点E,若正方形的周长为16,则DE的长为( )
答
过E点向AB做垂线,交AB于F.
∵AE为角平分线且EO⊥AC,EF⊥AB
∴EO=EF
∵∠ABD=45°
∴△BFE为等腰直角△
∴BF=EF
设OE=x
则BE=根2x
列方程:根2x+x=2根2
DE=OE+DO
自己解吧.