我们把能平分四边形面积的直线称为“好线”.利用下面的作图,可以得到四边形的“好线”:如图①在四边形ABCD中,取对角线BD的中点O,连接OA、OC.显然,折线AOC能平分四边形ABCD的面积,再过点O作OE∥AC交CD于E,则直线AE即为一条“好线”.(1)试说明直线AE是“好线”的理由;(2)如图②,AE为一条“好线”,F为AD边上的一点,请作出经过F点的“好线”,并对画图作适当说明(不需要说明理由).
问题描述:
我们把能平分四边形面积的直线称为“好线”.利用下面的作图,可以得到四边形的“好线”:如图①在四边形ABCD中,取对角线BD的中点O,连接OA、OC.显然,折线AOC能平分四边形ABCD的面积,再过点O作OE∥AC交CD于E,则直线AE即为一条“好线”.
(1)试说明直线AE是“好线”的理由;
(2)如图②,AE为一条“好线”,F为AD边上的一点,请作出经过F点的“好线”,并对画图作适当说明(不需要说明理由).
答
知识点:能够根据两条平行线间的距离相等发现三角形的面积相等,理解“好线”的概念.
(1)
因为OE∥AC,
所以S△AOE=S△COE,
所以S△AOF=S△CEF,
又因为,折线AOC能平分四边形ABCD的面积,
所以直线AE平分四边形ABCD的面积,即AE是“好线”.
(2)连接EF,过A作EF的平行线交CD于点G,连接FG,则GF为一条“好线”.
∵AG∥EF,
∴S△AGE=S△AFG.
设AE与FG的交点是O.
则S△AOF=S△GOE,
又AE为一条“好线”,所以GF为一条“好线”.
答案解析:(1)设AE与OC的交点是F.要说明直线AE是“好线”,根据已知条件中的折线AOC能平分四边形ABCD的面积,只需说明三角形AOF的面积等于三角形CEF的面积.则根据两条平行线间的距离相等,结合三角形的面积个数可以证明三角形AOE的面积等于三角形COE的面积,再根据等式的性质即可证明;
(2)根据两条平行线间的距离相等,只需借助平行线即可作出过点F的“好线”.
考试点:平行线之间的距离;三角形的面积.
知识点:能够根据两条平行线间的距离相等发现三角形的面积相等,理解“好线”的概念.