设方程3x的三次方-2x的平方+3x-1=0的根为x1,x2,x3,求x1x2+x2x3+x1x3的值
问题描述:
设方程3x的三次方-2x的平方+3x-1=0的根为x1,x2,x3,求x1x2+x2x3+x1x3的值
答
因为x1,x2,x3是原方程的三个根,所以,原方程可写作:(x-x1)(x-x2)(x-x3)=0解开得:x^3-(x1+x2+x3)x^2+(x1x2+x2x3+x1x3)x-x1x2x3=0而原等式两边同除以3得:x^3-(2/3)x^2+x-1/3=0所以有x1x2+x2x3+x1x3 = 1得解P.S.此题...