如图,两幢楼高AB=CD=30m,两楼间的距离AC=24m,当太阳光线与水平线的夹角为30°时,求甲楼投在乙楼上的影子的高度.(结果精确到0.01,3≈1.732,2≈1.414)

问题描述:

如图,两幢楼高AB=CD=30m,两楼间的距离AC=24m,当太阳光线与水平线的夹角为30°时,求甲楼投在乙楼上的影子的高度.(结果精确到0.01,

3
≈1.732,
2
≈1.414)

延长MB交CD于E,连接BD.
由于AB=CD=30,
∴NB和BD在同一直线上,
∴∠DBE=∠MBN=30°,
∵四边形ACDB是矩形,
∴BD=AC=24,
在Rt△BED中tan30°=

DE
BD

DE=BD•tan30°=24×
3
3
=8
3

∴CE=30-8
3
≈16.14,
∴投到乙楼影子高度是16.14m.