锐角△ABC,a,b,c分别为内角A,B,C所对的边,已知sin(B+C)=cos(C-B)=4/5,且b
问题描述:
锐角△ABC,a,b,c分别为内角A,B,C所对的边,已知sin(B+C)=cos(C-B)=4/5,且b
(2)试用B+C与C-B表示出B,并求内角B的度数
(3)若b=5,求a边的长和△ABC的面积
答
(1) sinA=Sin(180°-(B+C))=sin(B+C)=4/5,又A为锐角,故cosA=根号下(1-sin²A)=3/5(2)2B=(B+C)-(C-B)sin2B=sin【(B+C)-(C-B)】=sin(B+C)cos(C-B)-cos(B+C)sin(C-B)=16/25+3/5*3/5=1所以B=45°(3) a/sinA=b/sinB...