已知,矩形OABC在平面直角坐标系中位置如图所示,A的坐标(4,0),C的坐标(0,-2),直线y=-2/3x与边BC相交于点D.

问题描述:

已知,矩形OABC在平面直角坐标系中位置如图所示,A的坐标(4,0),C的坐标(0,-2),直线y=-2/3x与边BC相交于点D.
(1)求点D的坐标;
(2)抛物线y=ax2+bx+c经过点A、D、O,求此抛物线的表达式;
(3)在这个抛物线上是否存在点M,使O、D、A、M为顶点的四边形是梯形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.
注意一下解析式是直线y=-2/3x不是其他的,

(1).由题设知,B(4,-2).设直线y=-2/3x与BC边相交于D(x,-2).由相似三角形的对应边成比例,得:1:x=|-2/3|:|-2|.x=|-2|/|-2/3|.=2/(2/3).=3.∴D点的坐标为:D(3,-2).(2)∵抛物线y=ax^2+bx+c过A(4,0),D(3,-2),O(0,0)三...