已知函数f(x)=2^x-2^(-x)/2^x+2^(-x)

问题描述:

已知函数f(x)=2^x-2^(-x)/2^x+2^(-x)
1.求函数的定义域和值域
2.试问函数f(x)的图像上是否存在两个不同的点A\B,使直线AB恰好与y轴垂直.若存在,求出A\B两点的坐标;若不存在,说明理由并加以证明

令t=2^x,则x≥0时,t≥1
∴f(t)=(t-1/t)/(t+1/t )
=(t^2-1)/(t^2+1)
=1-2/(t^2+1)
t≥1,则t^2+1≥2;0<1/(t^2+1)≤1/2;0>-2/(t^2+1)≥-1;1>1-2/(t^2+1)≥0.
即当x≥0时,f(x)值域为[0,1)
∵f(-x)=(2^-x-2^x)/(2^-x+2^x )=-(2^x-2^-x)/(2^x+2^-x )=-f(x),f(x)是奇函数,则值域关于原点对称.则当x≤0时,f(x)值域为(-1,0]
综上,函数f(x)=(2^x-2^-x)/(2^x+2^-x )值域为(-1,1)