已经a2+b2+c2+49=4a+6b+12c,求(1/a+1/b+1/c)abc的值

问题描述:

已经a2+b2+c2+49=4a+6b+12c,求(1/a+1/b+1/c)abc的值

a^2+b^2+c^2-4a-6b-12c+4+9+36=0
(a^2-4a+4)+(b^2-6b+9)+(c^2-12c+36)=0
(a-2)^2+(b-3)^2+(c-6)^2=0
a=2,b=3,c=6
(1/2+1/3+1/6)abc
=1abc
=36