已知非常数列{an}满足a1=a2=1,anSn+1=an(Sn-an)+2(an+1)^2(n>=2),则lim[(Sn)+1]/(Sn+1)=?
问题描述:
已知非常数列{an}满足a1=a2=1,anSn+1=an(Sn-an)+2(an+1)^2(n>=2),则lim[(Sn)+1]/(Sn+1)=?
答案为8/5
答
当n≥2时,an=Sn-S(n-1);a(n+1)=S(n+1)-Sn,代入anS(n+1)=an(Sn-an)+2(a(n+1))²整理得:[Sn-S(n-1)][S(n+1)-S(n-1)]=2[S(n+1)-Sn]²即 an[a(n+1)+an]=2[a(n+1)]²即 2a(n+1)/an-an/a(n+1)-1=0解得 a(n+...其实撒,我是做出来这步后卡住了啊哈哈哈好,n≥2时,Sn=1+[1-(-1/2)^(n-1)]/[1-(-1/2)]=5/3-1/[3·2^(n-2)][(Sn)+1]/(Sn+1)={5/3-1/[3·2^(n-2)]+1}/5/3-1/[3·2^n]n→∞时,1/[3·2^(n-2)]→0,1/[3·2^n]→0,结果:(8/3)/(5/3)=8/5