等差数列{an},{bn}的前n项和分别为Sn,Tn,且an/bn=2n+1/3n+1,则S11/T11=,S2n-1/T2n-1=等差数列{an},{bn}的前n项和分别为Sn,Tn,且Sn/Tn=3n+1/2n+3,则a5/b5=,an/bn=
等差数列{an},{bn}的前n项和分别为Sn,Tn,且an/bn=2n+1/3n+1,则S11/T11=,S2n-1/T2n-1=
等差数列{an},{bn}的前n项和分别为Sn,Tn,且Sn/Tn=3n+1/2n+3,则a5/b5=,an/bn=
解:a5/b5=[(a1+a9)/2]/[(b1+b9)]/2=[9(a1+a9)/2]/[9(b1+b2)/2]=S9/T9=(3×9+1)/(2×9+3)=4/3;因为Sn/Tn=(3n+1)/(2n+3),设Sn=(3n+1)x,Tn=(2n+3)x,所以an/bn=[Sn-S(n-1)]/[Tn-T(n-1)]={(3n+1)x-[3(n-1)+1)]x}/{2n+3-[2(n-1)+3]x}=3/2。
(1)∵等差数列{an},{bn}
∴S11/T11=((a1+a11)×11÷2)/((b1+b11)×11÷2)=((2a6)×11÷2)/((2b6)×11÷2)=(a6)/(b6)=(2×6+1)/(3×6+1)=13/19
S 2n-1/T2n-1的值类似上面的求法,只要找出前n项和与an之间的关系.
(2)a5/b5=(S5-S4)/(T5-T4)=3/2
an/bn的求法与上式类似,学会灵活运用an=Sn-S(n-1)(n>1)、an=Sn (n=1)
设an=m(2n+1),bn=m(3n+1)
Sn=[3m+m(2n+1)]n/2=m(n+2)n
Tn=[4m+m(3n+1)]n/2=m(3n+5)n/2
s11/t11=m(11+2)*11/[m(3*11+5)*11/2]=13/19
s2n-1/t2n-1=m(2n-1+2)(2n-1)/[m(6n-3+5)(2n-1)/2]=(2n+1)/(3n+1)
Sn/Tn=[(a1+an)n/2]/[(b1+bn)n/2]=3n+1/2n+3
可设Sn=m(3n+1)n/2,Tn=m(2n+3)n/2
a1=S1=2m,S2=7m,a2=S2-a1=5m,d1=3m
b1=T1=5m/2,T2=7m,b2=T2-b1=7m-5m/2=9m/2,d2=2m
a5/b5=(2m+3m*4)/(5m/2+2m*4)=4/3
an/bn=[2m+3m*(n-1)]/[5m/2+2m*(n-1)]=(6n-2)/(4n+1)
通过巧设系数m来使运算准确,虽然复杂点,而且易于理解