设等差数列{an}的前n项和为Sn,且Sn=(an+12)2,(n∈N*),若bn=(−1)nSn,求数列{bn}的前n项和Tn.
问题描述:
设等差数列{an}的前n项和为Sn,且Sn=(
)2,(n∈N*),若bn=(−1)nSn,求数列{bn}的前n项和Tn.
an+1 2
答
因为a1=S1=(
)2,所以 a1=1.
a1+1 2
设公差为d,则有a1+a2=2+d=S2=(
)2.2+d 2
解得d=2或d=-2(舍).
所以an=2n-1,Sn=n2.
所以 bn=(−1)n•n2.
(1)当n为偶数时,Tn=−12+22−32+42−…+(−1)nn2
=(22-12)+(42-32)+…+[n2-(n-1)2]
=3+7+11+…+(2n−1)=
;n(n+1) 2
(2)当n为奇数时,Tn=Tn−1−n2
=
−n2=−(n−1)•n 2
=−
n2+n 2
.n(n+1) 2
综上,Tn=(−1)n•
.n(n+1) 2