设等差数列{an}的前n项和为Sn,且Sn=(an+12)2,(n∈N*),若bn=(−1)nSn,求数列{bn}的前n项和Tn.

问题描述:

设等差数列{an}的前n项和为Sn,且Sn=(

an+1
2
)2,(n∈N*),若bn=(−1)nSn,求数列{bn}的前n项和Tn

因为a1S1=(

a1+1
2
)2,所以 a1=1.
设公差为d,则有a1+a2=2+d=S2=(
2+d
2
)2

解得d=2或d=-2(舍).
所以an=2n-1,Snn2
所以 bn=(−1)nn2
(1)当n为偶数时,Tn=−12+2232+42−…+(−1)nn2
=(22-12)+(42-32)+…+[n2-(n-1)2]
=3+7+11+…+(2n−1)=
n(n+1)
2

(2)当n为奇数时,TnTn−1n2
=
(n−1)•n
2
n2
=
n2+n
2
=
n(n+1)
2

综上,Tn=(−1)n
n(n+1)
2