计算:1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)+…+1/(x+1998)(x+1999),并求当x=1时,该代数式的值.

问题描述:

计算:

1
x(x+1)
+
1
(x+1)(x+2)
+
1
(x+2)(x+3)
+…+
1
(x+1998)(x+1999)
,并求当x=1时,该代数式的值.

1
x(x+1)
+
1
(x+1)(x+2)
+
1
(x+2)(x+3)
+…+
1
(x+1998)(x+1999)

=
1
x
1
x+1
+
1
x+1
1
x+2
+
1
x+2
1
x+3
+…+
1
x+1998
1
x+1999

=
1
x
1
x+1999

当x=1时,原式=1-
1
1+1999
=
1999
2000