已知cos(π/2+x)=sin(x-π/2) 求sin^3(π-x)+cos(x+π)/5cos(5π/2-x)+3sin(7π/2-x)

问题描述:

已知cos(π/2+x)=sin(x-π/2) 求sin^3(π-x)+cos(x+π)/5cos(5π/2-x)+3sin(7π/2-x)

因为cos(π/2+x)=-sinx,sin(x-π/2)=sin[π-(x-π/2)]=sin(π/2-x)=cosx,由cos(π/2+x)=sin(x-π/2),得:-sinx=cosx.所以[sin^3(π-x)+cos(x+π)]/[5cos(5π/2-x)+3sin(7π/2-x)]=[(sinx)^3+cosx]/[5cos(π/2-x)+3si...